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I SUMMARY

I The DSN project at AI&DS is concerned with the formation and evaluation

of hypotheses for situation assessment in a distributed manner by the processing

nodes in a DSN. In particular, the tracking and classification of multiple

Jtargets is chosen to understand the basic technical issues since the uncertain
origin of the measurements for such problems requires the formation of data

Iassociation hypotheses. Our approach involves the use of techniques from

both estimation theory and artificial intelligence.

Little has been done on distributed multitarget tracking and classification.

Even in the centralized case, the existing results are not really good enough

to provide a sound foundation for developing distributed techniques. We have

thus investigated the centralized multitarget tracking problem. This report

contains a general theory for multitarget tracking and classificiation using a

Bayesian estimation-theoretic approach. The models assumed are very general

and are capable of handling complex situations such as targets moving in groups

or sensors with a limited field of view. When specialized to independent,

identically distributed target models, which are more widely studied, the

theory yields algorithms which are similar to, but more general than other

existing algorithms. The various terms in the evaluation algorithm have

intuitive explanations which reflect the target and sensor characteristics.

For the practical implementation of this algorithm, hypothesis management

techniques (pruning, combining, etc.) have to be used to control the rapid

growth in the number of hypotheses. Some new techniques are proposed, but

a basic theory is still lacking. This is an area where ideas from artificial

intelligence can be useful.

I iv
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All this has been implemented in a system called the Generalized

Tracker/Classifier (GTC). It contains the following four on-line modules.

The hypothesis formation module generates the data-to-data association

Ihypothesis which identifies the data reported at different times from
different sensors with the same targets. The hypothesis evaluation module

evaluates the probability of each hypothesis given the information available.

We have developed recursive evaluation formulae which reduce to the standard

formulae in the literature under simplifying assumptions. The filtering and

parameter estimation module solves the tracking and classification problem

given a particular data-association hypothesis. If the targets are independent

and identically distributed, then the algorithm decomposes into a parallel

bank of single target algorithms. The hypothesis management module controls

the (asymptotically) exponential growth in the number of hypotheses.

The GTC can be used by itself for centralized multitarget tracking and

classification. It is also used to process the local sensor data at a node

and, together with other modules for information distribution and fusion, is

a basic component of each processing node in the DSN. This will be reported

in a subsequent report.

Simulation runs for a scenario with terrain masking of targets are used

to demonstrate the hypothesis management techniques and the general feature

of the GTC.

IV.1
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i 1. INTRODUCTION

The distributed hypothesis formation in DSN project at AI&DS is concerned

I with the formation and evaluation of hypotheses for situation assessment in a

distributed manner at the processing nodes in a DSN. The basic system model

assumes the presence of a distributed system of sensor/processing nodes, that

1nodes have one or more sensor types, have overlapping sensor coverage and are

connected in a packet switching network. The input information at each node

Iconsists of:
- own sensor information

- neighbor nodes hyotheses

- contextual information

While the system can also be used for distributed planning and control

(see Figure 1-1), our focus in this project is on distributed situation

assessment. Our main thrust is to understand the technical issues for such

distributed systems through the analysis of idealized problems using tech-

niques from both estimation theory and artificial intelligence.

jOne area where a DSN is useful is the tracking and classification of mul-

tiple targets. We have chosen this problem as a vehicle for understanding the

1basic issues. Despite the obvious importance of this problem and some applied

work [1I, very little has been done towards developing a theory of distributed

multitarget tracking and classification. (Some attempts have been reported in

[2], [3].) Even if we consider only the centralized case, the existing

results are not good enough to form a basis for the development of distributed

I. algorithms. We thus have searched for a better theory for centralized multi-

j target tracking. This report sumarizes the results of our investigation.

I
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The multitarget tracking problem arises in many application areas such as

ocean surveillance, air traffic control and air defense, etc. A key feature

in such problems is that the origins of the measurements may be uncertain. As

a result, it is necessary to associate the measurements with the target tracks

before any estimation of the targets can be performed. Many algorithms for

multitarget tracking have been suggested [4]-[211. Surveys of the area can be

found in the survey paper by Bar-Shalom [221 and the Naval Ocean Surveillance

Correlation Handbooks [231,[24). The recent paper by Reid [20] also contains

a good survey of the then existing methods. Thus we will not perform a

detailed survey here. Most of the existing work deals with approximate algo-

rithms which are only applicable to specific situations. There have been some

attempts to search for a unified theory [251, but the results are still not

very satisfactory. Reid's paper is a step in this direction and has motivated

the work of Keverian and Sandell [181.

The multitarget tracking problem is different from ordinary estimation

problems in that the origins of the measurements are in general uncertain.

In other words, the order in which the meaburements are obtained does not con-

tain any information about their relationship to the targets. Thus the meas-

urements should really be considered as elements in a set rather than as ele-

ments in an ordered tuple as in the case of an ordinary estimation problem.

In order to use ordinary estimation techniques for multitarget tracking, one

needs first to hypothesize the origins of the measurements. These hypotheses,

however, need to be generated in real time and cannot be specified a priori.

The problem is thus different from ordinary hypothesis testing where the

hypotheses to be tested are usually specified before hand. This introduces a

new class of unconventional estimation problems which involves combinatorics

(for generation of hypotheses), hypothesis testing and ordinary estimation.

3



Hypothesis management ideas which are important in artificial intelligence are

also needed.

In this report we present a comprehensive theory on multitarget tracking

and classification using a Bayesian approach. The theory is based on fairlyI
general assumptions. In fact, tracking and classification can be considered

simultaneously, and general models on target dynamics and sensors can be han-

dled. Our results include almost all existing results as special cases when

specific models are used and simplifying approximations are made. Although

the results are theoretically complete, successful implementation requires

good hypothesis management techniques.

Our algorithm has been implemented in a system called the Generalized

Tracker/Classifier (GTC), which has the structure shown in Figure 1-2. It

consists of three off-line modules and four on-line modules. The three off-

line modules are:

1. generalized target dynamics model

2. environmental model

3. sensor model

These are used in the design and selections of algorithms. The on-line

modules are:

1. hypothesis formation

2. hypothesis evaluation

3. filtering and parameter estimation

4. hypothesis management

4
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The hypothesis formation module generates the data-to-data association

hypothesis which identifies the data reported at different times from dif-

J ferent sensors with the same targets. The hypothesis evaluation module evalu-

ates the probability of each hypothesis given the information available. We

have developed recursive evaluation formulae which reduce to the standard for-

mulae in the literature under simplifying assumptions. The filtering and

parameter estimation module solves the tracking and classification problem

given a particular data-association hypothesis. If the targets are indepen-

dent and identically distributed, then the algorithm decomposes into a paral-

lel bank of single target algorithms. The hypothesis management module con-

trols the (asymptotically) exponential growth in the number of hypotheses.

The details of these modules are described in the remaining sections and sum-

marized in Section 8.

The GTC can be used by itself for centralized multitarget tracking and

classification. It is also used to process the local sensor data at a node

and, together with other modules for information distribution and fusion, is a

basic component of each processing node in the DSN [26]. The details will be

discussed in a subsequent report.

The structure of the report is as follows. In Section 2, we present the

general target and sensor models. Section 3 introduces the definitions of

tracks and hypotheses which are needed in the multiple hypotheses approach.

The basic hypothesis evaluation algorithm applicable to the general target and

*sensor models is given in Section 4. Section 5 considers the specialization

of this hypothesis evaluation algorithm to independent, identically distri-

buted target models. The relationship of these results to the other existing

algorithms is discussed in Section 6. In Section 7, we present the hypothesis

6
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management techniques which are crucial for implementation. The implementa-

tion of the algorithm in the form of the Generalized Tracker/Classifier (GTC)

is discussed in Section 8. Section 9 contains an example to illustrate the

use of the GT C. A conclusion is given in Section 10.

7-
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I
2. TARGET AND SENSOR MODELS

In this section we describe the target and sensor models which will be

assumed for the derivation of the general results. The models ate quite gen-

eral and include almost all other models used in the multitarget tracking

literature that the authors are aware of. More specific models for a class of

subproblems will appear in Section 5.

2.1 Target Model

As is customary in the mult~target tracking literature, a target is used

to describe any object to be tracked, whether it is a friendly or enemy vehi-

cle. In the general model described below, we model all targets which may be

of interest ac one entity rather than as a collection of individual targets.

Thus the state of all targets is modeled by a continuous-time stochastic pro-

cess (X, NT), taking values in the direct-sum space

U X x (2.1)

NT is an integer-valued random variable representing the total number of tar-

gets. This number is assumed to be random but constant, largely to reduce

unnecessary complexity. Given that the number of targets is n, X is a sto-

chastic process taking values in X n . In general, X n is a hybrid set, i.e., a

direct product of a subset of an Euclidean space (continuous part) and a fin-

ite set (discrete part). This is to allow for the representation of targets

with both continuous and discrete states. X is also assumed to be a time-

homogeneous Markov process. To complete our description, we assume there

exists a time t0 before which no sensor data is available. The target model

I
-! 8



I
is then specified by the a priori probability density (mass) p(NT), distribu-

tion p(dX t INT), and the transition probability

FN (E; X(t),At) i Prob {X(t+At)EEI(X(t),NT)) (2.2)

T

defined for every t > t ,at > 0 and every measurable set E in N T We use

p(.) to denote the probability density (mass) or distribution of one or more

random variables. What we mean should be obvious from the context.

This general target model includes the case where the targets are corre-

lated, such as when they are moving in a group. A special case of interest

which will be discussed in Section 5 consists of independent and identically

distributed (i.i.d) targets. I.i.d target models constitute a very important

subclass of target models since they describe many real-life situations.

Furthermore, the resulting tracking algorithm is relatively easy to implement

and is related to various existing tracking techniques. With the i.i.d.

assumption, we can replace Xn by Xn, a direct-product space of the identical

hybrid spaces X. The continuous part of X corresponds to position, velocity

and other dynamics parameters, while the discrete part corresponds to the tar-

get type, maneuvering mode, communication activity, etc. Likewise, the vari-

ous probability distributions and the transition probability (2.2) can also be

partitioned. For example, (2.2) can now be replaced by

F(E; x(t), At) _ Prob { x(t+At)CEx(t) } (2.3)

which is common to all the i.i.d. targets.

L ... . ,, 9
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2.2 Sensor Model

Let S -{1, N.... ) be the set of sensors which generate the measurements

from the targets. For each sES, let the measurements take value in the set

Vs . We assume Y to be a hybrid space where the continuous part contains the

position and/or velocity information and the discrete part contains feature

type reports. A data set or sensor report is the set of data which a sensor

generates at a given time. Formally, a data set is a random element

(y,N m,t,s) in the set

U J Vm x {m} x [t.,') {s}
S S(2.4)

which means that the data set from sensor s at time t consists of N

m

measurements given by y - (y...,y,)"
m

Five assumptions are made with respect to the generation of these data

sets:

Assumption I (Known exact timing)

The time at which any data set is generated is exactly

known.

Assumption 2 (Memoryless)

There is no memory in any sensor so that any target

• - state density/distribution conditioned on the past

data sets and the target state is the same as the one

conditioned only on the target state.

10
'1
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!
Assumption 3

Any measurement in any data set from any one sensor

does not originate from two or more targets.

Assumption 4

No target creates two or more measurements in any data set.

Assumption 5

The order of measurements in a data set contains no

information about the targets.

Assumptions 1 and 2 are standard in filtering problems while assumptions

3 and 4 are almost standard in the multitarget tracking literature. Assump-

tion 5 is crucial to our theoretical development and reflects the random

nature about the origin of any measurement. In some situations, the sensor

data should be partitioned so that these assumptions hold or at least are

approximately valid. For example, the measurements from a radar with a fixed

scanning pattern over an area may contain some information about the targets

in the order of the measurements. In such a case, the data sets should be

further divided so that the measurement order does not contain any significant

information. By doing so, we do not need the notion of "type I sensors" and

"type II sensors" which were loosely defined in [20].

With these assumptions, we can now describe our sensor model. A data set

(y,N33 t,s) is generated through the following four steps.

Detection:

Let 6 be the detection function. Given (X(t),NT),

the target state at time t, 6 is a random binary function

i
11I.



I
i defined on a set {1,...,NT} as

1 if the i-th target is detected

0 otherwise. (2.5)

IThis random function 6 induces a set (of detected targets)

I D - Ii E {1,...,NT} I6(i) i). ( 6)

The detection model is completely specified by the conditional

probability

p(61X(t),NT). (2.7)

Generation of Number of False Alarms:

This is specified by the conditional probability

p(NmI ,X(t),NT).

Random Assignment:

Let ct be an assignment function defined on ID and taking values

in the set {l,...,Nm}. ct(i) f j means that the J-th measurement yj in

data set (y 1 ,...,N),Nm, t,s) originates from the i-th target. Thus,

m

with A\B as the difference of two sets,

JFA = {l,...,Nm}\Image(a) (2.9)

-is the set of measurement indices corresponding to false alarms (or measure-

ments not originating from a target). According to assumptions 3,4, and 5,

Ishould be one-to-one with probability one and we have
NF!

P( jINm,6,X(t),NT) P(clNI% ,6,NT) = . (2.10)

m

I
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I for each a. NFAD the number of false alarms, is the cardinality of the set

JFA. In other words, a particular ordering of the data (yl,...yN ) is a

realization of equally likely assignments of the detected targets given they

have been determined by 6.

Generation of Measurement and False Alarm Values

This is specified by the conditional probability density

p(y ja,Nm , ,X(t),N T) (2.11)

which includes the measurement error model as well as the model of the false

alarm values.

The general sensor model described above is similar to the usual

measurement equation used in filtering except for the random assignment

function which results from the unknown origins of the measurements and the

random detection function which further complicates the process. This is the

key difference between ordinary filtering and multitarget tracking.

1
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3. TRACKS AND HYPOTHESES

Tracks and hypotheses are among the most frequently used terms in the

multitarget tracking literature since there is a need to associate the meas-

urements with the targets. However, in most cases these terms have not been

precisely defined. Our definition of tracks and hypotheses follows closely

Morefield's notations in 116], but differs in one crucial aspect, namely, the

separation of the measurement-value information from the number-of-

measurements information in each data set.

We assume that there are only a finite number of data sets. Let

(tIt 2,...,) be the properly ordered set of times at which the data sets are

generated by the sensors. Each data set (y,Nm,tks) is then uniquely identi-

fied by the pair of integers (ks). We may thus refer to a data set by its

index (k,s) provided that a sensor is not allowed to produce two data sets at

the same time. For each data set (k,s), a measurement index set is given by

Im(k,s) - (I ..... Nm). (3.1)

A lexicographic order < on the indices is defined as

1) (k,s) < (k',s') if either k < k' or (k - k" and s < s').

2) (k,s) < (k',s') if either (k,s) < (k',s') or (k,s) (k',s')

The cumulative measurement index set is defined as

I (k,s) = U (k',s') x {(ks)}. (3.2)

(k,s') <(k,s)

14



The cumulative data set at (k,s) can be similarly defined as

p(dX(t),N TIZ(ks)), the conditional probability of the target state given all

the available information. Since the origins of the measurements are uncertain.

our strategy is to hypothesize the origins of the measurements and use these

hypotheses as intermediate variables in our computation.

We define a track T at (k,s) to be a nonempty subset of the cumulative

measurement index set I (k,s). A data-to-data association hypothesis X,

(referred to simply as a hypothesis later on) at (k,s) is a (possibly empty)

set of track(s) at (k,s). According to assumptions 3 and 4 in Section 2, any

track containing two or more measurement indices from the same data set and

any hypothesis with overlapping tracks are impossible in the sense that

p(XIZ(k 's)) a 0.

A hypothesis X ., )} at (k,s) should be interpreted as a

hypothesized event which states that n targets are detected in one or more

data sets up to (ks) and T. is the set of measurement indices (together with

data set identification (k',s')) originating from the i-th detected target.

Thus, for example, hypothesis 0 = hypothesizes that all the measurements up

to (k,s) are false alarms.

For any given (k,s) and (k',s') such that (k,s)>(k',s'), we call a

hypothesis X at (k',s') a predecessor of a hypothesis X at (k,s)



I ________ so)
if each track t' in X' is a restriction of a track T in k to I (k',s')

i.e., T' - xfl m (k','l and each track T in X is either the extension

of a trackT' in ' to I(k s) or 'fI (k', s) = 4. If (k',s') is the

unique immediate predecessor of (k,s), ' is called the parent of X.

We should note tnat a parent of a hypothesis X is uniquely determined by

m(k'"F')l X

I
|I
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3 4. RECURSIVE BAYESIAN EVALUATION OF HYPOTHESES

I As mentioned before our strategy is to calculate p(dX(t),N Tz(ks)) using

the expansion

p(dX(t),NT[z (k's)) = p(dX(t),NT ix,z(ks). p(XIz(ks)). (4.1)

Since the number of measurements in any data set is finite, the number of pos-

sible hypotheses given the cumulative data set is also finite. Therefore, at

least in principle, we can calculate the conditional probability of the target

state if p(dX(t),NTIX,z(k's)) and p(XIZ(k 's)) are evaluated. In this section,

we shall first discuss the recursive computation of p(XIz(k's)). The computa-

tion of p(dX(t),NTIX,z(k3s)), which is also necessary, will then follow.

4.1 Computation of p(Xlz(ks))

Let the current data set be (y,Nm t ks) and the immediate predecessor of
m'~s k''s

(k,s) be (k',s'). To simplify the notation, we denote Z(k s) z(k ' s )

(X(tk),NT), (X(tk),NT) and the parent of a hypothesis X, by Z, Z, (X,NT),

(X,NT ) and T, respectively.

A straightforward application of Bayes rule gives us the following basic

equation:

p(XZ) - z) (4.2)

1
WhenZ = *, we have X = * and p(kIfZ-) - I in (4.2). Since
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I p(7'l) is given by recursion and the denominator is the normalizing

constant, the only term to be evaluated is p(Z,jTZ,T) which is expanded

I as

I

1p(Z,XIz,X) = Fap(NI Z ') f p(ZIXX,N TP Z I) p(dXIN Ts Z,X) (4.3)
NT 

XNTI
where the integral is defined with respect to the hybrid probability measure

p(. INTZ,). Both p(NTIZ,) and p(dXjN ,Z,X) are to be generated by recur-

sion in Section 4.2, and can be used to compute p(dX,NTIZ, X).

On the other hand, p(Z ,XIX,N T-Z,') in (4.3) can be further expanded as

p(Z, I X,.N ,T ) = p(yjtNm,6,X,N ' ,)

p(XIa, Nm 6,X,NToZ,T)

p (a IN, ,x , NT,X,N )

p(Nm 16,X,NT,Z,7)

p(61 X,NT,IZ,) (4.4)

where a and 6 are the assignment and detection functions defined in Section

p(yla, mN,6,X,NTZ ) - p(y a,Nm,6,X,NT (4.5)

P(Nm16,XNT,Z,T) - p(NIm &,X,NT), (4.6)

and p(6IX,N T,ZX) - p(61X,NT) 
(4.7)
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are provided by the measurement-error/false-alarm distribution model, the

false-alarm-number model and the detection model respectively. Also,

p(aIN,,x, NT,Z, ) is given by (2.10) in Section 2 . The

remaining term,

p(XCl],NM,5.X,NT,Z,X) = p(XIc,Nm, 6,NT,X), (4.8)

checks the consistency between X and (c,N,6,NT), i.e.,

I if X is consistent
p(XIl,N , ) =

0 otherwise (4.9)

To define consistency more precisely, we shall introduce additional index

sets. Given X, let ID and IDC be the sets of indices of targets which are

hypothesized by X to be detected in the current data set and in the cumulative

data set, respectively. ID and IDC are defined similarly for X. Such index-

ing is not unique since there is no a priori indexing on the targets. There-

fore, each target index set hypothesized by A or X should be interpreted as

one of the equal-probability representations. In addition, let IN = 'D\IDC be

the index set of targets hypothesized by X to be newly detected at (k,s). A

hypothesis, A = {TiIiCIDC}, with the parent, - T = {T. iE ), is :.7nsistent

with (c,Nm,6 ,NT) if and only if

1) Ti Ti U {(c(i),k,s)} for i I DCID, (4.10)

2) *. - t. for ieIDc\ID, (4.11)

and

3) - {(t(i),k,s)} for iEIN.  (4.12)
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Thus, if X is consistent with (c,N ,I,NT), ID as defined here is also con-

sistent with that given by 6 in Section 2.

Consequently, (4.4) is reduced to

p(Z AI X, NT,ZjT ) = NFA! F P(yla,Nm6,X,NT)

' 'N m " ( c , 6 )

p(Nm 5,XN T)

p( 1X,N T) (4.13)

where the summation is over the set of (,6)s for which X is consistent, It

then follows from (4.3) and (4.13) that

1P(Z'XjZ'' N FA" N
pCZ)jZX)= NFA Pj (NT IZ'X)

m T

E fj fT P(YxcNM6,XNT) P(Nmlt6,XNT)

p(6IX'NT) p(dXINTsZ,) . (4.14)

Equations (4.2) and (4.14) allow the recursive computation of

p(IZ) if p(NTIZX) and p(dXINT,Z,X) are known. All the other conditional

probability distributions or densities needed are given by the sensor model.

2
1
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4.2 Computation of p(dXINTsZ,X) and p(NTI Z,X)

Up to this point, we have not used the Markov nature of the target

model. The updating of the target state (XNT) is by means ofl

p~dXIN TZ,X) = C(N T)-j p(yla,N,6,X,N T) p(NMj6 ,XN T

I p(61X,NT) p(dXINTo Z) (4.15)

and

I C(NT) (NFA!) P(NTIZ,X)

p(NTIZX) T FA T (4.16)T p(z,Xli,\) NN m

where C(NT) is a normalization constant given by

C(NT) a 2f p(yaNm,6,XNT) P(NM' 'X'NT

T

p(61X,NT) p(dXINT,ZA). (4.17)

Extrapolation can be accomplished through

1 p(dXINT,,) f f FN T(dXIX,At) p(dXINT,',T) (4.18)

I where 
T

l At - tk - t k

I
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I To the best of our knowledge, the results presented in this section for

the general target and sensor models are new. The evaluation of each

hypothesis is carried out recursively using equations (4.2) and (4.14).

IEquation (4.14) also requires the computation of certain posterior
conditional probabilities for the number of targets and the target

I states. These are give by equations (4.15) to (4.18). We can thus

theoretically handle very complicated situations, such as targets moving

as a group. However, since a nonlinear filtering problem is involved,

the actual use of this algorithm is not trivial unless some special

structures are exploited. An example of this for i.i.d. target models

is discussed in the next section.

2

I
I
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5. INDEPENDENT, IDENTICALLY DISTRIBUTED TARGET MODELS

As we may anticipate, the fairly general algorithm described in the pre-

vious section can be greatly simplified if we assume that given NT, the number

of targets, each individual target state is an independent and identically

distributed random process. The simplification is possible because many terms

in (4.13)-(4.18) can be expressed as products under these assumptions. In

this section, the important subclass of i.i.d. target models is discussed and

the result will be used to provide a unified view of existing tracking algo-

rithms.

5.1 Assumptions on Models

The following additional assumptions are used for this section:

Assumption Al

The target state space Xn for NT = n is the direct product set

nnX nof a hybrid state X with a hybrid measure PI. Given N T = n

the target state X = (xi) i) l is a system of time-homogeneous, independent

and identically distributed Markov processes with the common statistics given

by the initial distribution

Prob {xi(t )Cdx)) q0 (x)IJ(dx) (5.1)

and the transition probability density

Prob {xi(t+At)Edx~xi(t)} - F(xi(t+At) xi(t),At)i(dx). (5.2)

I
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Assuption A2

The a priori distribution of NTo the number of targets, is Poisson with

mean V .

IAssumption A3
NFA, the number of false alarms for each data set (k,s), is independent

Iof any target state or any other data set and has a Poisson distribution with

mean vFA which may be a function of (k,s) (time and sensor). Given N FA the

number of false alarms at a data set (k,s), the false alarms are i.i.d. with

the common probability density pFA(Y) on Vs and are independent of any target

state or any other data set.

Assumption A4

The measurement error in y which originates from a target i in

any data set depends only on the target state x . Thus, there exists

a measurement probability transition function, pM(.I.): Yx X [0,c)

such that

P((Yl""'YN )IC1'Nm'I6,XNT) = 11 PM(Y (i) lx)) ( H PFA(Y (5.3)

D FA

Assumption A5

The event pertaining to the detection of a target i depends only on its

state x,, namely, there is a detection function 6 and detection probability

SpD(): X [0,1] such that

NT (5.4)

I p(6IX,NT) l I PD(X) i PD(x -6(i)

5.2 Hypothesis Evaluation Algorithm

Assumptions Al, A4 and A5 imply that, for any (ZX) at any data set

(ks), we have
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mp(dxi,-'..dx NT[NT$,Z, ) )  " P(xi',Z,Ti)ii(dx i ) M q(x I)IJ(dx i )  (5.5)

T itIv

where (T ; ;iciDc , p(.IZj i ) is the probability density of zi(t k ) condi-

tioned by the corresponding track and the measurement-value data given by Z,

and q is the common probability density of a target conditioned by the fact

that it has never been detected up to and including the data set (k,s).

On the other hand, Assumptions A3 to A5 together with (5.5) can reduce

(4.14) into the following form:

p(ZAjZAT) _e FA p(NT12,A) VFN A fl (YFN ! EFA F

NT (c,c6) JEJFA

n PM(Ycl(i)'Xi) PD(Xi) (1-pD(x ))
Xk~i 1- P D ()

e-_VFA (T Na NFA ( n FA(Yj)" F "(T I" FA

( cc 6 JFA

qH/ PM (Ya( i) I x) P D ( x ) p (x '- i (dx>

i EI D nDC f

Hx f (1-PD(x)) Pxl, jd)

f /PD(X) q(x) Pl(dx))
N T-N DC (5.6)

1
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U
3 where NDC " #(I D) - #(X) is the number of detected targets being hypothesized

by A. It is clear that p(N TIZ,X) - 0 if NT < N DC When a triple

I (,N ,NT ) is given, the number of 6's such that there exists an a

so that X is consistent with (0,6)'is

N (N N

(NTN- DC) N T NDC)

N - - (5.7)

J where NDC i#(IDC)- (7) and N #(IN) = NDC NDC. For such a 6, there

are NN! permutations, or N! C's for which X is consistent with (a,6).

Therefore, the number of (c,6)s with which A is consistent is given by

(NT -NDC)l

(N T - NDC)! (5.8)

Furthermore, for a given (X,NmNT), all (0,6)'s with which X is consistent

should agree on IDC , i.e., if A is consistent with (a,6) and (c',6') we

must have c(i) - a'(i) and 6(i) - 6'(i) for all I DC. In addition, for all

j (a,6)'s with which A is consistent, the product

n f PN(Ya(i) 1x) PD(X) q(x)lI(dx) (5.9)

has the same value as a product even though individual multipliers and

I N may vary. Thus, the four products behind the summation E(a,6)

in the last expression of (5.6) have the same value for all such (,6)'s.
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Consequently, when we choose one (OL,6) with which X is consistent and

I define JN ({O(i) I iIN}, (5.6) is further reduced to

FVFA

m JEJ FA

F'C f YCXPM (Ya'(i)Ix) PD(x) P(Xji,T) i(dx)

H fx(I- c W) P(Xli,-T j(dx

11 PM (p J x) PD (x) q(x) pi(dx)JEJN X

P (NT Z. )(NT-Nc) '! p

T p(N T) (N1 N D q(x) V(dx)) NT-N DC

T DC (5.10)

Using a similar argument, equation (4.16) can be reduced to

CNI (N T-N DC) N;-D

(CN' (N (-N ) - fx PD (x) q(x) p(dx))NTDC p(N TI, )

if NT > NDC

0 otherwise (5.11)

where CN is a normalizing constant. Then, using an inductive argument, it is

easy to show that at any data set (k,s), p(NTIZ,X) is a biased Poisson dis-

tribution. In particular, we have

Se- V (NTNDC) if NT > NDC
p(N TIZX (NT-N C

0 0 otherwise (5.12)
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where V is the expected number of undetected targets up to and including

(k',s'). V is common to every X and is given by recursion.

By substituting (5.11) into (5.10) and using the basic equation (4.2), we

obtain the following recursive equation:

PCXjZ) -p(XIZ)
N mI exp(VFA + (- Loo)'v) p(ZIZ)

F] L FAJ  H- LOW(i
J JFA iD r DC

[1 L -0  5.13)ie fDc\ D i  jEJNLo

where

LFAj = vFAPFA(Y j )  (5.14)

is the likelihood of the jth measurement being a false alarm,

LiLj -4 PM(Yj X) PD(X) p(x-Z'-Ti) ij(dx) (5.15)

is the likelihood of the jth measurement originating from the ith

detected target,

L° LO=fX (l-PD(X)) p (x ,, v2(dx) (5.16)
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is the likelihood of the ith previously detected target missing in the current

data set,

I L°J f PM(Yjlx) PD(x) q(x) P(dx) (5.17)

Iis the likelihood of the jth measurement originating from a newly detected
Itarget, and

I L = XP(X) q(x) P(dx) (5.18)

is the likelihood of an undetected target remaining undetected in the data

set.

The updating and extrapolation equations given by (4.15), (4.16) and

(4.18) can now be simplified. Updating is given by the following equations.

For iSI DI n
D DC'

p(Xlz ,Ti) = L (i) 1pM(Yx(i)x) PD(x) p(xlZ,'Ti). (5.19)

For ic IDC'\ D ,

p(XIZ,T i ) = L I ( - PD(X)) p(xIZ,T). (5.20)

For i EIN

p(xIZ, T) - Loa(i)' PM(Y(i)lx) PD(x) q(x). (5.21)

v, the new expected number of undetected targets, is given by
v v L (5.22)

00

where v becomes v at the next data set. q(.) should be replaced by

Lo0-(l.-PD(x)) q(x).~(5.23)
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, Ahoot - tk t k 0, extrapolation is accomplished by using the

following equations where after extrapolation p(.1 Z,T.) and q(.) are

replaced by

Fx;,t (X_'1. jdx (5.24)

and

X F(xix,At) q(X) j(dx-) (5.25)

respectively.

Equations (5.13) - (5.25) provide the basic algorithms for the tracking

of multiple independent and identically distributed targets. Equation (5.13)

is the key equation and computes the probability of a hypothesis recursively

usinj& some basic likelihood functions. These likelihood functions are given

by equations (5.14) to (5.18). All the necessary conditional probabilities on

the target states are given by equations (5.19) to (5.25). All the likelihood

functions have very intuitive explanations and are based on the target and

sensor models. In the next section, we relate this algorithm to other exist-

ing results.

I

1
I
I
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6. RELATION TO OTHER RESULTS

The results in Section 4 for general target models are new to the best

of our knowledge. Even when specialized to i.i.d. target models, the algo-

rithm given by equations (5.13)-(5.25) has been derived using more general

models than usually assumed in the literature. In particular, hybrid (con-

tinuous and discrete) target models and complex pD models can be handled

theoretically, although the actual implementation may be nontrivial. In this

section we compare our results on i.i.d. target models to some existing algo-

rithms. It will be shown that these algorithms can be obtained from our basic

algorithm when certain approximations are made.

Since equation (5.13) is recursive in nature, repeated application of

(5.13) leads to the following batch form,

p(XIZ) -C(zY L D I Li, (6.1)

FA 1lDC

where C(Z) is a normalization constant given by

C(Z) p(Z) exp (V -)) H NT'! exPFA9 (6.2)
o (k',s') <- (k,s)

LFA H H LFAj, (6.3)
(k',s')5(k,s) jEJFA

and Li can be computed recursively using equations (5.15)-(5.17).

The batch form (6.1) is similar to the basic criterion function

used in Morefield's algorithm[161 where 0-1 linear programming is used for the

final optimization. It should be noted that in our derivation of (6.1), we do
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not have to evaluate p(X), the a priori probability of a hypothesis in

Morefield's formulation.

Almost all the known algorithms in multitarget tracking are based on

assumptions introduced in Section 5, although in some cases these assumptions

have not been stated explicitly. In addition, the following assumptions are

usually made when classification is not of interest.

(1) PM(Yjlx) is defined by a linear Gaussian model, i.e.,

yj = Hx + v (6.4)

where H is a matrix and v is a Gaussian noise process.

(2) PFA(yj) is a uniform density.

In many cases, it is also reasonable to assume that q(.), the distribu-

tion of an undetected target, has a much bigger variance than that of p M(.Ix). In

this case, p(.IZT) is approximately Gaussian, and hence equations (5.19) and

(5.24) reduce to the standard Kalman filter equations. The uniformity assump-

tion of PFA reduces LFAj to a constant which is actually the number of false

alarms per unit scan volumn. Furthermore, if we assume that pD(.) is constant

over the sensor's field of view which is large compared with the variance of

any reasonable p(.IZ,j), then (5.15) and (5.16) can be approximated by

L.j PDf PM((yjIx) p(xjZi ) i (dx) (6.5)

and

L. -1- (6.6)

2.0
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where p is the constant value of It is now clear that the algorithm

given by (5.13) to (5.25) coincides with Reid's algorithm [201 except for Loj ,

the new target likelihood function, which in our case is computed from V and

q(.). The corresponding term in [201 is called the new target density and is

said to "depend on the number of times the area has been observed by a type 1

sensor and the possible flux of undetected targets into and out of the area."

However, no expression is given for its computation in [201. Although the

computation of L0 as given by (5.17) is not easy, it is an important term in

evaluating hypotheses and initiating new tracks, particularly when a number of

returns are obtained in just a few scans.

As in [20], there is no separate track initiation pricess in our algo-

rithm. This can be considered to be more general than algorithms such as

those in [13],1211 where a separate initiation process is required, in the

following sense. If the cumulative measurement index set of (3.2) is expanded

to include {l,...,N} x {(0,0)} where -9 is the number of a priori tracks, then

the general equation (5.13) reduces to an algorithm with a separate track ini-

tiation process where the recursion (5.13) is started with a single probabil-

ity one hypothesis containing the N tracks.

It is well known that the number of hypotheses grows very rapidly in an

algorithm of this type. Therefore, for a multi-hypothesis type tracking algo-

rithm to be implementable, some form of hypothesis management scheme must be

used. Many hypotheses management schemes [20] are available, e.g., fixed

level, fixed breadth or adaptive pruning, M-scan or similar hypothesis combin-

ing, windowing (dat. validation), clustering, etc. In some existing algo-

rithms, one of the above strategies is used to its extreme. For example, a

zero scan algorithm as defined in [201 is used to obtain the probabilistic
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I data association (PDA) filter in [10] and the joint probabilistic data associ-

ation (JPDA) filter in 121]. Extensive combining is used in the Gaussian sum

Iapproach of Alspach [131. These vill be discussed in detail in Section 7.

I

I
1
1

I



I
7. HYPOTHESIS MANAGEMENT TECHNIQUES

It should be obvious that any algorithm which forms multiple hypotheses

from the data suffers from the rapid growth in the number of hypotheses. The

growth is actually worse than exponential although no worse than factorial.

Thus adequate hypothesis management to control the number of hypotheses is

essential for any successful implementation of such algorithms. Many

hypothesis management techniques have been proposed in the past. For the sub-

class of multitarget tracking problems described in Section 5, almost all the

existing techniques are needed. These techniques have usually been proposed

based on intuitive reasons rather than mathematically rigorous arguments. An

exception is a recent report [27] in which "optimal" pruning and windowing is

discussed. It is the authors' opinion, however, that these results may only

be applicable to special cases.

Thus no general theory on hypothesis management techniques exists at the

present moment. The purpose of this section is to summarize some existing

techniques and describe any modifications to such techniques adopted by the

authors. We divide the hypothesis managements techniques into the following

four classes:

1. Pruning .... cutting branches

2. Combining .... binding branches together

3. Windowing .... data validation

4. Clustering .... data partition

In the following, we shall discuss the techniques according to the above

classification. Although some of the techniques described below may apply to
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the general model of Section 4, for the most part we shall restrict our atten-

tion to the i.i.d. target case where all the assumptions in Section 5 are

I satisfied.

1 7.1 Pruning

I Pruning techniques can be further classified into (1) thresholding, (2)

breadth control, and (3) adaptive pruning techniques.

The basic philosophy behind thresholding is to cut (or remove) the

"insignificant" hypotheses which in turn tend to produce more insignificant

hypotheses. In [20], it is proposed to cut any hypothesis with posterior pro-

bability less than a fixed predetermined threshold. In the i.i.d. target

case, the thresholding may be performed at the track level using the track

likelihood functions described in Section 5. One of the disadvantages of this

fixed thresholding is that it is performed without any consideration of the

available computational resources or the external condition (e.g., clear

versus confusing, etc.). For example, given the same computational resources,

one should be able to keep more hypotheses for little available data than for

a large amount of data. This, however, is not present in the fixed threshold-

ing scheme.

This consideration leads to the second subclass of breadth control tech-

niques in which a fixed number, say M, of the best hypotheses are chosen and

Ipropagated forward. This is proposed by Keverian in [17]. Choosing a fixed

breadth M makes sense when we regard the number of hypotheses kept as a meas-

I ure of the computational and memory requirements. However, fixed breadth con-

trol may lose its rationale quickly when some form of clustering is used since

the resources cannot be efficiently allocated among the clusters. Also, the

I
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breadth control or iixed breadth method requires a sorting algorithm which

requires additional effort although this issue may not be important since many

good sorting algorithms do exist. When breadth control is used extensively to

its limit, only one (best) hypothesis is selected and propagated forward. In

[20], this mode of pruning Is called a zero-scan algorithm.

Although fixed-threshold pruning may be viewed as adaptive-breadth

pruning, and vice versa, these techniques do not really adapt to the complexity

of the situation. The third subclass of pruning techniques, called adaptive

pruning, is proposed by the authors to be more adaptive. In this strategy,

the hypotheses are first sorted into the descending order of their posterior

probabilities. Then, when the cumulative sum of the probabilities from the

best hypothesis exceeds a given threshold, the remaining low probability

hypotheses are pruned. This method may be called adaptive-threshold/adaptive-

breadth pruning since it adjusts both the absolute threshold and the breadth

according to the complexity of the external condition, i.e., the more complex

the situation is the more low probability hypotheses are retained. The

adaptive pruning techniques make more sense than other pruning methods

when clustering is used and may be viewed as a way of automatically allocating

computational and memory resources among the clusters. However, it still

suffers from the same drawback of any fixed thresholding scheme in that the

actual (absolute) computational and memory resources cannot be predicted.

Furthermore, some form of sorting is still needed.

From a theoretical point of view, the posterior probabilities of

hypotheses may be considered as a discrete distribution. Hypothesis pruning

may then be viewed as picking the approximation techniques for the distribu-

tion. Figure 7-1 displays the approximation involved in the three schemes.
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I Thus the theoretical issues in hypothesis pruning are what a good approxima-

tion should be and how it influences the future evaluation in multitarget

j tracking. Although some theories on the approximation of probability distri-

butions (e.g., Sorenson and Alspach [28]) may give us some insight, we believe

that hypothesis pruning is still an open research area.

7.2 Combinin2

The existing combining techniques can be divided into two subclasses:

(1) distribution-oriented techniques and (2) measurement-index-oriented

techniques.

The philosophy behind the first subclass is to combine two similar

hypotheses, where similarity is interpreted in a certain way, depending on the

state distribution. According to Reid [20], two hypotheses are similar if

they have the same number of tracks and each track in one hypothesis has a

unique companion track which is similar to it in the other hypothesis. The

similarity of tracks is measured by the state estimate distributions, which

accounts for the name of distribution-oriented techniques. The rationale

behind this approach is that each track state distribution should reflect all

the relevant information which affects any future event due to the underlying

Markovian assumptions. Thus, if two state distributions of tracks are close

enough, we would expect the future behavior of the two tracks to be similar.

Suppose two hypotheses A, and A2 are similar, where

i = T ....... n) i - 1,2. Then hypothesis combining leads to a new

hypothesis X {t,...,T n} with

p(XIZ) - p(X lZ) + p(0 2 IZ) (7.1)
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pCxl.j,Z) 1 p lz ) p ~x lz r + p(X 2 1Z)p (xIZ -1 2 (7.2)

where w(.) is a permutation which maps a track into a similar track.

However, there still remains the crucial question of choosing a good

measure of "similarity" and a good threshold for that measure. When each

track distribution is Gaussian, Reid [201 proposes inequality tests using

the means and the diagonal elements of the covariance matrices.

However, no theoretical justification for the use of those particular

inequalities is given. His intuitive reason is that for tracks to be

similar, both their means and their variances should not be widely

different. This test may work well for Gaussian distributions, but may

prove to be inadequate for more general distributions.

Distribution-oriented combining is used to its extreme in [l1 and [21]

where all the hypotheses are combined after proper windowing (described

below) and a fixed number of targets are assumed i.e., every hypothesis

has the same number of tracks. When two Gaussian distributions are

combined, the combined distribution becomes a Gaussian sum distribution

because two different hypotheses represent two disjoint events. When a

Gaussian st distribution is approximated by a Gaussian distribution,

the means and the variances are usually equated. Unlike the results in

[20] or [11], the Gaussian sum form is preserved to a certain extent in

1[131 where each track distribution remains a Gaussian sum rather than
Gaussian. In this case, the hypothesis trees are extended to include

j one lower level, namely, the distribution level. The hypothesis

management (pruning and combining) techniques must then be extended to

I include this level.
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In summary, unless each track distribution is assumed to be and forced

to be Gaussian, the similarity criteria proposed in [20], [111], etc.,

may sometimes be unjustified. Theoretical results on similarity

criteria are still lacking in our opinion.

On the other hand, the measurement-index-oriented combining

techniques consider each track as a subset of the past cumulative

measurement index set as defined in Section 3. This technique has

been proposed by Singer, et. al., 191 and is a classical technique in

the multitarget tracking literature. In these schemes, the tracks whose

measurement indices on the past N scans are the same are regarded as

"similar" and identified. Thus they are often referred to as N-scan or

depth-N methods. In Figure 7-2, hypotheses 1 and 2 can be combined if N = 3.

The justification is that since each track distribution is driven by

the measurements assigned to it, if two tracks share the same

measurements in the recent scans (data sets) they should be similar.

This scheme is criticized by Reid (201 on the ground that some events in

the past may have a greater influence than the most recent N scans.

However, since the dynamical nature of a target model removes this

possibility, the N-scan approach is attractive because of its simplicity.

After identifying tracks according to the N-scan or depth-N criterion,

we may have several identical hypotheses, i.e., hypotheses with the

identical set of tracks. Then those hypotheses are combined in a

natural way. In a sense, this approach may be actually viewed as

combining tracks rather than combining hypotheses. In fact, since

similarity is initially defined at the track level even in
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distribution-oriented methods, one may further classify the combining

techniques according to when combining takes place. For example,

distribution-oriented combining may be performed at the track level or

at the hypothesis level. While track-level combining may seem to be

more straightforward, it creates another problem, namely, how two

distributions should be combined, since there is no natural weighting

formula similar to that like (7.2) used in distribution-oriented

combining at the hypothesis level.

To summarize, N-scan or depth-N methods have two major disadvantages,

namely, the unresolved issues of (1) how to choose a right depth N, and (2) how

to combine track state distributions. Just as in the case of pruning, many

theoretical questions remain in combining hypotheses. Our cu:rent Preference

is distribution-oriented combining at the hypothesis level since there

is a clear way for combining two probability distributions. The

similarity condition, however, should be carefully chosen according to

the physical nature of the particular problems and the chosen

representation of each track distribution, etc.

7.3 Windowing

When an i.i.d. target model is used with other assumptions described in

Section 5, each measurement data can be individually evaluated by

likelihood functions given by (5.14), (5.15) and (5.17). When a track

state distribution has a reasonable variance and the measurement errors

are not exceptionally large, one can expect the track-measurement

likelihood given by (5.15) to be very small for measurement data which

are geometrically far from the expected position based on the state

distribution associated with the track. Windowing techniques are
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generally designed to set an appropriate threshold so that the

track-measurement likelihood in such a case becomes zero rather than a

small positive number.

Thus, one may consider such techniques to be a special kind of pruning,

i.e., immediate pruning of branches based solely on one likelihood function.

In other words, windowing is a method for eliminating a certain set of data

to be associated with each track. For this reason, such a process is often

called data validation. When track state distributions and measurement error

distributions are both Gaussian, windowing can be accomplished by a classical

chi-square test. As described in [16], this test may be performed in several

steps. For example, the first step may consist of a Z test (square test),

and then a normalized square-of-innovation test (ellipse test), and finally,

the likelihood function test itself.

Another view of windowing is that it is a part of the distribution

representation and modeling process. According to this view, when the track

state and measurement distributions are modeled as Gaussian, they really

should be viewed as approximations of reality since such distributions

can only have compact supports in the real world. For example, when the

standard deviation of the measurement error is one mile, a data point 100

miles away from the mean of the track distribution should yield zero as

its likelihood rather than a very small but positive number. The authors

prefer this point of view to the pruning or approximation view. Thus any

windowing process should be carefully designed so that the particular

physical nature of the problem may be adequately reflected.
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7.4 Clustering

The basic idea behind clustering is that two events taking place at

locations far apart should be independent and can be evaluated separately.

Clustering techniques have been described in an algorithmic fprm in [201

for general cases and more rigorously in [111 for a special case. When

adequate windowing is performed, there is a natural way to avoid redundant

calculations in, evaluating hypotheses since the posterior probability of

each hypothesis is the product of an appropriate set of likelihood functions

as shown in Section 6. This constitutes another view of clustering.

Mathematically, clustering can be defined as follows.

Let A be the set of all non-zero-probability hypotheses at a given data

set, i.e., for all X c A,

p(AIZ) > 0. (7.3)

For each possible track T, the posterior probability of T is given by

p(TIZ) = I p(XlZ). (7.4)

Let T be the set of all non-zero-probability tracks, i.e., for all T T,

p(TIZ) > 0 (7.5)

Let C be any partition of T which satisfies the following condition:

For any pair (C',C") of elements in C, such that

C + C", and any T EC and T" EC",

...T'n "=. (7.6)
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Thii condition means that the'non-zero-probability tracks are

partic ne4 so that no two tracks which are in different elements

W tuts SS* .9 f the partition share a common measurement index. For each

0 in C, "let

and . AC = { CfcjXcA} 
(7.7)

IC = UC. (7.8)

Then clustering is the process of generating C) AC), CEC). Each A C

is the set of local hypotheses which consists only of tracks in C. For each

local hypothesis X --AxnC, the local posterior probability is given byC

Pc(Xc Z) = Z{p(XIZ)iXEA, XOC = X C. (7.9)

Then it is clear from (6.1) that

p(oJz) =cncPc(AcJZ) (7.10)

Each global non-zero-probability hypothesis can thus be represented as a

union of local hypotheses (one from each cluster) and its posterior probabil-

ity is the product of the local probabilities of the local hypotheses. From

this definition, we see that clustering involves partitions at all levels,

i.e., hypothesic, track and measurement levels.

Equation (7.10) is called the orthogonality condition. According to the

above definition of clustering, the orthogonality condition should hold when-

ever the non-intersection condition of the tracks given by (7.6) holds. How-

ever, when some approximation techniques such as pruning and combining are

employed, this may not be true any more. The clustering technique described

in 120] is a method in which the orthogonality condition is maintained without

checking the non-intersection condition of the tracks.

46



I

This technique can be described in terms of algorithmic procedures as

follows:

1. Initialization of a Cluster

Whenever there is a measurement such that the newly detected target

likelihood Loj is not zero but the track-measurement likelihood Lij

with every existing track is zero, a new cluster should be created

out of the measurement.

2. Cluster Merging

Whenever there is a measurement such that each of the corresponding

track-measurement likelihood functions with two or more tracks in

different clusters is non-zero (in other words, there is a measure-

ment lying in the intersection of the validation regions of two

tracks in two different clusters), such clusters should be merged

before the measurement can be processed. The merging of the clusters

is accomplished by forming the union of the tracks in the clusters,

generating the global hypotheses and evaluating the global probabili-

ties as the products of the local probabilities.

3. Cluster Splitting

Whenever a track with probability one, i.e., one contained in every

local hypothesis in a cluster is found, it is split to form a new

cluster consisting of one hypothesis with the sole track. Of course,

the local probability of such hypothesis is one.
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IIt is the authors' opinion that any serious attempt on practical problems

Ishould not be made without clustering, particularly in a problem in which a

large area is covered. One may even assert that clustering is probably the

most powerful hypothesis management technique in controlling the number of

hypotheses. Of course, how successful a clustering technique is depends on

the external conditions such as target density, measurement errors and targets

dynamics.

The clustering procedure described above does not necessarily guarantee

the finest clustering. The finest clustering may be found according to our

mathematical definition of clustering. The test of the non-intersection con-

dition can be easily implemented if we identify two tracks with the same meas-

urement indices in a certain number of the most recent scans just like in a

measurement-index-oriented combining scheme. The orthogonality condition can

be met by modifying the local probabilities using appropriate approximation

techniques whenever possible. This constitutes a new cluster-splitting tech-

nique which may improve on that described above. Although this newly proposed

version of clustering seems promising, we do not have any actual implementa-

tion experience yet.

4I
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8. IMPLEMENTATION

In the previous sections, we have presented a unified theory for multi-

target tracking and classification. In this section we describe the General-

ized.TrackerlClassifier (GTC) which implements the algorithms developed in the

theory. The Generalized Tracker/Classifier has a structure given by

Figure 1-1. It has three off-line modules and four on-line modules.

The three off-line modules are:

1. Generalized Target Dynamics Model

2. Environmental Model

3. Sensor Model

These represent the knowledge about the physical world that needs to be con-

sidered in the design and selection of the algorithms. Mathematically, they

are described in Section 2 and include almost all other models as special

cases.

The four on-line modules are:

1. Hypothesis Formation

2. Hypothesis Evaluation

3. Filtering and Parameter Estimation

4. Hypothesis Management

The hvoothesis formation module generates the data-to-data association

hypotheses which identify the data reported at different times from different

sensors with the same targets. It carries out the function described

mathematically in Section 3. This module uses only the information in the

measurement indices and does not require the actual values of the measure-

ments. Since no model information is needed, this module is model

49
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independent. Although the hypotheses are defined as collections of tracks

which are in turn collections of measurement indices, an equivalent and more

convenient representation for implementation is by means of a tree. In this

representation, each level in the tree corresponds to a measurement index and

a node corresponds to a target. Hypothesis generation given a new sensor

report then reduces to the expansion of the tree and a branch of the tree

represents a particular data-to-data association hypothesis. The concepts of

the parent of a hypothesis, defined earlier in Section 3, is also obvious from

this representation.

Figure 8-1 shows a hypothesis tree for two data sets each with two meas-

urements in each. The tracks associated with each hypothesis are also given.

For example, hypothesis 24 associates yl and y 21 with the same target (track

1 2
5), and y 2 with a different target (track 2). It thus hypothesizes y 2 to be

a false alarm. Note that from two data sets with two measurements each, we

have eight possible tracks and a total of 34 possible hypotheses.

The hypothesis evaluation module evaluates the probability of each

hypothesis given the information available. For general target models, it

performs the function given by equations (4.2) and (4.14). If i.i.d. target

models are assumed, evaluation is through equations (5.13) to (5.17). Equa-

tion (5.13) is quite independent of the particular models and provides the

structure of the evaluation. Equations (5.14) to (5.17) evaluate the likeli-

hoods of various associations and are model dependent. Thus the implementa-

tion of the hypothesis evaluation module consists of a (model-independent)

track-measurement cross reference table and the (model-dependent) computation

of likelihoods. As we have seen in Section 6, this module is considerably

more general and realistic than is currently available in the literature.

5
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The filtering and parameter estimation module implements equations (4.15)

and (4.18) for general target models and equations (5.19) to (5.25) for i.i.d.

target models. They provide the necessary density or distribution functions

for hypothesis evaluation. Conceptually, they solve the ordinary estimation

Iproblem when the origins of the measurements are known. However, even for the

1i.i.d. case, approximations are often needed to solve the general nonlinear

estimation problem. When enough approximations are made, as discussed in Sec-

tion 6, the standard Kalman filter often results. One novel feature of the

GTC is that the density of undetected targets as well as the expected number

1 of undetected targets is constantly updated at each scan. This allows for

better track initiation than is currently available in other algorithms. As

is expected, this module is heavily model dependent.

The hypothesis management module implements the ideas discussed in Sec-

tion 7, and is crucial for the successful operation of the GTC. It is model

independent in the sense that the te,.hriques involved are applicable to a wide

class of scenarios. The user, however, can celect certain parameters to con-

form with the computational and memory requirements or to reflect his

4 knowledge about the complexity of the situation. These parameters are the

Ipruning thresholds in hypothesis pruning, the thresholds for testing similar-

ity in hypothesis combining, the size of the window in windowing, and the cri-

I terion used in cluster splitting. As has been discussed in Section 7, a good

theory of hypothesis management is still lacking, and thus the hypothesis

Imanagement module usually requires a lot of tuning before the entire GTC will
I function properly. Some techniques in artificial intelligence may be useful

here.

I
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9. AN EXAMPLE - TRACKING WITH AN MTI RADAR SYSTEM

In this section we present an example to illustrate the main features of

the Generalized Tracker/Classifier (GTC). Although the algorithm has been

successfully tested for more complicated scenarios, a simpler case has been

chosen here for ease of exposition. The results of some Monte Carlo simula-

tion runs will be used to highlight the effects of some external and internal

parameters on the performance of the tracker.

A moving target indicator (MTI) is a radar which is specially designed to

detect only moving objects while avoiding ground clutter. For the purpose of

this section, we assume a type of MTI which provides a three-dimensional meas-

urement (range, bearing and radial velocity) for each detected object. The

altitude difference between the sensor and the targets is assumed to be negli-

gible. The radial velocity RV of an object at x0 in a fixed three-dimensional

cartesian coordination system with respect to a fixed sensor at xs in the same

coordinate system is defined as

RV 0 s (9.1)

0 S

1
where o is the velocity vector of the object (the time-derivative of xo0

1(.1.) is the inner product of two vectors, and 11.11 is the norm of a vector.

In general, an MTI detects objects with a nonzero probability only when their

radial velocities exceed a certain fixed threshold, called the minimal discer-

nible velocity (MDV).

II
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9.1 Scenario Description

We are concerned with the surveillance of terrain with a road network

using an MTI radar which is fixed (e.g., on a helicopter). The radar is

assumed to be at a relatively low altitude, and thus the positional informa-

tion is actually two-dimensional. The terrain, especially the road network,

is assumed to be known. The objective is to track multiple targets moving

over the terrain using a sensor which can provide both positional and velocity

information.

Our specific scenario consists of a single straight road segment in the

field of view of an MTI radar (Figure 9-1). The road segment is assumed to be

the only part of a longer road which is observable from the radar. A target

(an object to be tracked, such as a vehicle) can be identified by its position

on the road as measured from the point which is closest to the MTI radar. We

shall use the i.i.d. target model and the corresponding tracking algorithm

described in Section 5, together with all the other assumptions made in that

section. A target on the road is assumed to move at an almost constant velo-

city, i.e., the velocity is assumed to be a random variable plus a random walk

with an intensity which is small compared with the variance of the constant

part. The scan interval, At, is assumed to be constant. Thus, the indivi-

dual target dynamics are modeled as

U(t = [1 At][u(tk) 1 + (9.2)

V(t k+l) 0 1 V(tk) w

where (tk, k = 0,1,2,...) is the sequence of scan times, u(t) is the position

!
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of a target on the road at time t, v(t) its velocity and {Wk, k - 0,1,2,...)

is a sequence of zero-mean i.i.d. Gaussian random variables. The initial

nosition and velocity are unknown a priori. Therefore, they are assumed to be

uniformly distributed over some reasonable ranges. The probability of a tar-

get being detected is a function of its state x (position and velocity), i.e.,

PD if IRVI MDV

PD(X) = and u is not masked (9.3)

0 otherwise

Figure 9-2 shows the detection probability contour when the masks are

ignored. The masks on the road, created by the terrain (e.g., hills), tall

trees and foliage, etc., may be known exactly or only probabilistically. In

this example we assume the former case. The field of view and the masked

regions used for the present example are shown in Figure 9-3.

Given that a target has been detected, the measurement (range, bearing

and radial velocity) consists of the true values plus independent additive

zero-mean Gaussian noises. The distribution of false alarm measurements is

assumed to be uniform over the measurement space. However, the measurements

which are unlikely to originate from the road are dismissed as false alarms

before they are used by the tracking algorithm.

9.2 Likelihood Functions and Filtering

In our cpinion, the calculation of q, the probability density of an

undetected target, is a crucial part of the tracking algorithm. This is actu-

ally one part of our algorithm which is clearly different from other existing

tracking algorithms. In the present example, the density q of the position

j 56



I
I
I

I
50 50.84 51.75I II "

50.49 51.4 52.1

MTI Radar
Masked Region

Unmasked Regions: [50, 50.49]

[50.84, 51.4 ]
[51.75, 52.1 ]

Figure 9-3 Road Model

T

I

1 57

.1



and the velocity of an undetected target is approximated by a step function

q(uv) = ib mn X(u;In)X(V;Jn) (9.4)

where X(.;A) is the indicator (characteristic) function of the set A. The

quantization intervals, I and Jn , are chosen to be

m

Im [mA~x, (m+l),ax), for m e {1,. .,30)

I = x Xn ]
I 1 =[X2 max

1 o = (-MDV, MDV),

J, = [MDV, Vl), J-1 = -jig

J2 = [V' V2)' J- 2 = -J2'

1J 3 = [V2 ' V3 1 J- 3 
= -J 3 P (9.5)

where xa -.50 km is the left limit of the field of view, xr - 52.1 km the

right limit and the ,ther values are Ax = 70 m, MDV - 2 m/s, V1 f 10 m/s, V2 2

20 m/s, and V3 - 30 m/s. xmin and X n x are shifted in each extrapolation

operation. Their initial values are chosen so that there is still some inflow

of density at the end of all the scans and that the position of a vehicle is

uniformly distributed over the field of view.

The exact extrapolation of the density q using the dynamic equation (9.2)

requires complicated numerical integration. However, since we assume that
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each target moves at an almost constant velocity, we can approximate the

extrapolation by a simple translation of q(.,v) for each velocity v by v times

At. In order to maintain the step-function form of (9.4), the shifted

results are integrated after each extrapolation. After each scan, the density

q is updated by (l-PD(x)). For this purpose PD(.) is approximated by a step

function with the same quantization cells as those for the density q.

An example of the calculation of the density q is shown in Figure 9-4, in

which {%n, m = 0,...,31} for n 1 1 is shown after each operation. n = I

means that the target's velocity is between 2 m/s and 10 m/s. Thus, the

extrapolation operation, (2) -> (3), (4) -> (5), (6) -> (7), (8) -> (9), is a

right shift with vAt = 90 m where v - 6 m/s is the average velocity and At =

15 s is the scan interval. In Figure 9-4, this right shift operation is

approximated to maintain the same quantization cells.

The probability of detection, PD, is assumed to be .8, a relatively high

value. After the first scan, the probability density drops drastically in the

unmasked regions due to the relatively high pD* The change in value in the

unmasked region after one scan reflects the effect of the dependence of the

detection probability on the radial velocity. Thus, after scan 0, an

undetected target in the velocity sector (2 m/s to 10 m/s) is very likely to

be either in the masked regions or outside the field of view. At scan 1, as

shown in Figure 9-4 (a), an undetected target may appear on the right side of

a masked region. However, if it does move out of a masked region, it should

be detected with probability .8. Thus, the density in the unmasked regions

drops again (Figure 9-4 (a)). As these steps continue, we expect almost all

the targets which have been hiding in the masked regions to eventually come

out and be detected.

5
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Figure 9-5 (a) and (b) show L00 , the likelihood (also a probability in

this case) of an undetected target remaining undetected, and v, the expected

number of undetected targets versus the number of scans. The relatively high

values of reflect our assumption that the density q spreads over a wide

region where a target can never be detected. The initial value for v is the a

priori expected total number of targets and is set to be 27, i.e., we

expect about three or four targets to appear in the field of view within the

ten scans. Because of the high pD' D V drops rapidly in the first few scans.

Then it decreases more gradually, due to targets moving into the unmasked

regions. We should note that V is updated by V <- VL If these variables
OO0

continue to be calculated for further scans, L converges to I and v to a

positive constant, reflecting the fact that eventually, all the targets,

detected or not, leave the field of view and will never be detected.

The density q is used to calculate the new target (or more precisely, the

newly detected target) likelihood function. Figure 9-5(c) shows some plots

for this likelihood function. In this figure, the likelihood for measurement

(r, CL, RV) is plotted for

n
cos ci =- D

and

RV - 10 m/s.

where D - 50 km is the distance between the MTI and the road, r is the range

measurement, a the bearing and RV the radial velocity. The exact calculation

of the new target likelihood function also requires a complicated numerical

integration. A relatively crude approximation is used, in which a zero-mean

one-dimensional Gaussian distribution is approximated by a step function,
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p(x) a1 X(x;Li) (9.6)

where L_ [-2C,-c), L L = with a, f p(x)dx and the

standard deviation a.

As shown in Figure 9-5(c), the new target likelihood function has a posi-

tive value only in the field of view and in the unmasked regions. In each

unmasked region, since RV is positive (i.e., the target is moving to the

right), the left edge has a greater value. As the scans continue, targets

hidden in the masks eventually come out and are detected, and hence the only

likely position for a new target to appear is the left edge of the field of

view.

Other likelihood functions are calculated using appropriate approxima-

tions. Once a track is formed by a single measurement, its state distribution

is always represented by a two-dimensional Gaussian distribution, i.e., the

mean and the variance. When a track is associated with a measurement, its

distribution is updated by the extended Kalman filter with the linear target

model (9.2) and the nonlinear measurement model. When a track is not associ-

ated with a measurement, the distribution is not updated although the

corresponding likelihood function (missed-target likelihood) is numerically

calculated for evaluating hypotheses. This approximation is justified because

of the relatively accurate range measurement.

19.3 Hypothesis Management

I The adaptive-threshold/adaptive-breadth pruning strategy of Sec-

tion 7 is used. In this pruning method, hypotheses are sorted according to

1 their posterior probabilities and the low probability hypotheses are removed

3 from the tail so that the number of remaining hypotheses is minimum while the
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sum of their probabilities is greater than a specified threshold, i.e.,

1 p(A i ) _ - E (9.7)

ITo avoid any confusion with the terminology commonly used for fixed-level
pruning, we call E the threshold instead of l-E p

IOur combining is based on the track state distributions. A relatively

simple method has been chosen in which two distributions with means ml and m2

are judged to be combinable if 11m 1 - m2 e c . All hypotheses with the same

I number of tracks are examined for their pairwise combinability. Once two

hypotheses are combined, combined tracks are represented by Gaussian distribu-

tions with the appropriate means and variances. Once two tracks are combined

into one track in this way, all the hypotheses which refer to such tracks are

modified so that the combined tracks become identical throughout these

hypotheses. Windowing is based roughly on the 3-0 principle. In our case,

data validation includes also the radial velocity test and the mask test. The

clustering described in Section 7 is also used. However, only tracks with

probability one are split from clusters.

i1

I
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9.4 A Sample Run

Figure 9-6 shows a data set for a single sample run described below. The

parameters are summarized as follows:

D =50 km distance between the road and the sensor

At = 15 s scan interval

MDV = 2 m/s minimal discernible velocity

ar = 3 m range measurement error standard deviation

ca = .1 rad. bearing measurement error standard deviation

aRV = .2 m/s radial velocity measurement error standard deviation

VFA = I per scan expected number of false alarms

V = 27 expected total number of targetso

PD = .8 probability of detection

S = 5% pruning thresholdP

E = 10 m combining thresholdc

The above set of parameters is used as the base case. The effects of

varying three parameters, namely, the expected number V FA of false

alarms per scan, the range measurement error standard deviation ar

and the pruning threshold S are examined in Monte Carlo simulations.P

The results are shown later.

In Figure 9-6, the actual target motions are shown by lines (1) through

(4). This target scenario is also used in the Monte Carlo simulations.

Targets (1) through (3) move relatively slowly at 10 m/s towards the

left. Target (4) moves at a higher speed, 15 m/s, to the right. Target

(1) is masked at scans 0, 1 and 2, appears at scan 3 for the first time,

and is not detected at scan 5 although it is in the unmasked region.

Target (3) appears at scan 3 and is falsely dismissed at scan 8. The
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false alarms appear almost uniformly over the field of view. All the

measurements (including false alarms) are shown in Figure 8-6 by their

projection on the road using the relatively accurate range measurements.

Figures 9-7 to 9-9 display the details of the hypothesis formation

process for the data shown in Figure 9-6. Figures 9-7(a) to 9-7(d) show

the complete histories of several clusters. Figure 9-8(a) to 9-8(g)

show the clusters, their hyoptheses and tracks and the probabilities for

each scan, while Figure 9-9 is a summary history of all the clusters.

The following is a scan-by-scan description.

SCAN 0: There are two measurements: one from target (2) and the

other a false alarm. The ratio of the new target likelihood over the

false alarm likelihood determines the probability of the new target

hypothesis,0 )'l T1) or X2= j ) , as shown in Figure 9-8(a).
I'i i

In Figures 9-8(a) through 9-8(g), hypothesis kXj and track T are indexed by

pre-subscript k, superscript i and subscript j, indicating the j-th

hypothesis or track in the i-th cluster at scan k. Each measurement is

identified by its measurement index (k,j), indicating the j-th

measurement at scan k.

The two measurements, (0,1) and (0,2) at scan 0, are almost equally

target-like. The (local) probability of measurement (0,1) originating

from a target, .753, is consequently almost the same as that of

measurement (0,2) in the other cluster, .781, Since there

is no a priori cluster, two clusters are formed as shown in Figures

9-7(a), 9-7(b) and 9-8(a). In Figures 9-7(a) and 9-7(b), each number at

a node of the tree represents the measurement association specified

by a particular hypothesis. In this tree representation, a positive

7 69
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I

integer i at a node means that the i-th target in a hypothesis is

hypothesized to generate the measurement indicated at the top of the

column which contains this node (the node level indicator). This

indexing of targets is unique only for a particular hypothesis. A "0"

at a node indicates that the particular hypothesis hypothesizes the

corresponding measurement to be a false alarm.

At the end of processing scan 0 measurements, there are two clusters,

each of which has two hypotheses. Therefore, there are four global

hypotheses. The best global hypothesis has probability .588 and

hypothesizes two targets of which one is actually a false alarm.

SCAN 1: There are three measurements. The second measurement,

(1,2), falls in a masked region and is therefore thrown away

immediately since it is a false alarm with probability one. As seen in

Figure 9-6, none of the two remaining measurements falls into the

validation windows of the two existing tracks. As a matter of fact, the

extrapolation of the two previous tracks indicates that both are in

the masked regions if they ever exist as real targets. Therefore, the

hypotheses, their probabilities and tracks remain unchanged, as shown in

Figures 9-7(a), 9-7(b) and 9-8(a) for these two existing clusters.

Two additional clusters, 4 and 5, are created from the two measurements

(1,1) and (1,3), as shown in Figures 9-7(d) and 9-8(a). Measurement

(1,1) appears on the left edge of the field of view and its radial

velocity measurement indicates a rightward movement. Therefore, the

hypothesis that this measurement originates from a target just coming

into the field of view is well supported. The probability of this

hypothesis (actually the truth) is calculated to be .696.
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Figure 9-8(a) Hypotheses/Tracks (Scan 0 and 1)
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On the other hand, the other measurement (1,3) appears on the left

edge of an unmasked region and its radial velocity measurement indicates

a movement towards the left. This means that, if it has originated from a

target, the target must have been in the same unmasked region at scan 0

but have escaped detection. The unlikely nature of this event is reflected

by the relatively low probability of .36 for the new target hypothesis

5
ix 1 in cluster 5. In reality, tnis measurement is a false

alarm.

Thus, we have four clusters each of which has two hypotheses.

Therefore, we have 16 (global) hypotheses. The best hypothesis has

probability .262. It contains two real targets as tracks and one false

track. The truth appears in the fourth best hypothesis which has only a

probability of .086.

SCAN 2: There are two measurements, (2,1) and (2,2). (2,1) falls

into the validation region of track 'r of cluster 4 which

has been initiated in scan 1. This measurement is the sole

measurement which falls into this validation region. Therefore, the

hypotheses in cluster 4 are expanded to five new hypotheses as shown in

Figure 9-7(d). The best hypothesis of these five hypothesizes that

measurements (1,I) and (2,1) originate from the same target. Its probability

is .9999449. The pruning threshold is .05, and hence the remaining

four hypotheses are pruned. Consequently, there is only one

probability-one hypothesis X left in cluster 4. At2 1

this point, it has been confirmed that there is at least one detected

target with probability one.

On the other hand, the remaining clusters 1, 2 and 5 have no track with a
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measurement in its validation region. Track 1= {(,1)}

in cluster I is initiated at scan 0 and the radial velocity measurement

at that time indicates that it should now appear in an unmasked region

if it has ever existed as a target. Since there is no measurement which

supports this hypothesis, the probability of the one-track hypothesis

drops from .753 to .379. Track in cluster 2, however,
1 1

indicates that the hypothesized target is still in the masked region.

Therefore, there is no change in cluster 2 as shown in Figure 9-7(b).

Track T5 in cluster 5 behaves similarly with the one-track hypothesis X5
I1I 1 1

decreasing slightly in probability from .36 to .357.

Measurement (2,2) does not appear in any of the validation regions of

the existing tracks, and hence, a new cluster 6 is created out of it.

Since it does appear at an unlikely position for a target (left edge of

an unmasked region with a negative radial velocity), the probability

that this measurement originates from a newly detected target is only .269.

There are now 16 (global) hypotheses. Two detected targets are

correctly incorporated into two tracks in the best hypothesis whose

probability is .228. It does not contain any false tracks.

SCAN 3: There are four measurements. Target (I) and target (3)

j are detected for the first time. Up to this point they have been hiding

in zero-detection-probability zones. Clusters 1, 4, 5 and 6 have no

measurement which falls into the validation regions of their tracks.

Cluster 4 has a probability-one hypothesis and remains unchanged.

Tracks and T6 in clusters 1 and 6 predict that the hypothesized
2 1 2 1
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targets should be masked and hence these clusters remain

unchanged also. However, track 2T in cluster 5 predicts that

the target should appear in an unmasked region and consequently its

probability drops from .357 to .10.

Cluster 2 has two measurements, (3,2) and (3,3), which fall into the

validation region of the only track 2TI. (3,2) originates

from the newly detected target (1) while (3,3) from the previously

detected target (2) which is correctly identified in the best hypothesis

in cluster 2. Cluster 2 is expanded into 12 hypotheses as shown in

Figure 9-7(b). Out of these twelve, eight hypotheses are pruned away

using the 5% pruning threshold. The remaining four hypotheses together

have probability 0.95 or more. They are then tested for their

combinability. The sixth and the eighth hypotheses have one target in

each while the ninth and the eleventh have two tracks in each.

Therefore the sixth is compared with the eighth, and the ninth with the

eleventh. By comparing the track estimates, the ninth and the eleventh

hypotheses are judged to be combinable and are combined. The four

tracks in these two hypotheses are combined into two tracks. Finally,

the tracks in the sixth and the eighth hypotheses are modified according

to this track combining. The resulting hypotheses, 3 1 32 32

shown in Figure 9-8(c), have probabilities ,634, .047 and .319, respectively.

i tracks target (2) correctly but fails to recognize

the newly detected target (1). The truth is preserved in the second
- 2

(locally) best hypothesis 3 X3 with probability .319.I

I
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I
Other measurements, (3,1) and (3,4), are used to create two new

Iclusters 7 and 8. Although (3,4) originates actually from target (3),

the corresponding hypothesis A 8 has only probability .266.
3 1

The best (global) hypothesis tracks two targets (2) and (4) correctly

but misses two targets (1) and (3). It does not contain any false track

and has a probability of only .159.

SCAN 4: Target (4) is still masked, but targets (1) and (3), which

I are all in unmasked regions, are detected. There is one false alarm

(4,1) at a position likely to have a target.I
Cluster 2 has two measurements (4,2) and (4,3) which fall into the

validation regions of tracks 3 T 2 and3 lT, respectively. Thus, cluster 2

is expanded as shown in Figure 9-7(b) into 30 hypotheses which are pruned

down to only one hypothesis which associates the measurement correctly.

This probability-one hypothesis contains two probability-one tracks,

2 34 and 4TI . Thus cluster 2 is now split into two clusters: cluster 3

3 2
which consists of track 4TI , and cluster 2 which now has only track 4 T1 .

Cluster 8 with hypothesis X8 indicating a target with3 1

probability .266 receives a measurement (4,4) and is expanded as shown

in Figure 9-7(d). As a result of pruning, only one probability-one

I hypothesis 4A survives,reflecting the truth correctly.

Cluster 4 which has one probability-one hypothesis is unchanged because

j the target is correctly predicted to be in a masked region.

On the other hand, track TI f T' in cluster I is now
3 1 01

predicted to appear in an urmasked region but there is no measurement

!
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I
from its predicted position. Thus, the one-track hypothesis 4Ai

has its probability of .379 reduced to .109. This probability

assessment will remain unchanged from this scan on because the track

predicts that the target escapes outside the field of view at scan 5

(see Figure 9-7(a)).

Clusters 5, 6 and 7, with their best hypotheses correctly dismissing the

measurements as false alarms, remain unchanged due to the masking

effect.

Cluster 9 is newly created from measurement (4,1) (actually a false

alarm) which is not validated by any of the existing tracks. Since the

position of this measurement indicates a strong possibility of coming

from a target, the one-track hypothesis A has probability .621.
9 1

Thus, the best (global) hypothesis with probability .304 contains five

tracks one of which is a false track. However, there is no missed target.

SCAN 5: There are three measurements. Two of them are from target 2

and target 4. Target I is not detected. As seen in Figure 9-6, about this

scan the targets cross each other in the one-dimensional physical space on

the road. There is no crossing in the two-dimensional state space and the

three-dimensional measurement space. Therefore, as seen in Figures 9-7(c)

and 9-7(d), there is no confusion which is usually associated with target

crossing. As seen in Figure 9-8(e) and 9-9, clusters 5 and 7 disappear,

i.e., the no-track hypothesis is now given a probability higher than the

pruning threshold in each of these clusters, and a new cluster 10 is formed

from a false alarm (5,3).
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Hypothesis X9 in cluster 9, which falsely indicates the
4 1

existence of a target, now has probability .247 instead of .621. Thus,

the best hypothesis with probability .438 now correctly indicates the

truth for the first time. There are no false tracks and missed targets.

I SCAN 6: Targets (1), (2) and (4) are detected while target (3) is

masked and there is no false alarm. As seen in Figures 9-8(f) and 9-9,

I hypotheses declaring tracks out of false alarms have either disappeared

or becoming less probable rapidly. Thus, the best hypothesis has a

probability of .756 and indicates the truth correctly.

I SCAN 7: Targets (1), (2) and (4) are masked but target (3) now

I comes out of a masked region and is detected. There is one false alarm

(7,1) but the probability of the measurement originating from a target

is less than the .05 pruning threshold and thus no new cluster is formed.

(7,3) is from a masked region and is ignored. Clusters 6 and 9 have now

disappeared. Thus the best hypothesis has probability .891 which is

j unchanged for the remaining scans. This is so because cluster I

remains unchanged as we have indicated before at scan 4.

I SCAN 8: There is only one measurement which comes from a masked

region, and hence there is no change in any cluster.

SCAN j: All four targets are detected and correctly

associated with the four confirmed (probability-one) tracks. One false

alarm appears from a masked region and is dismissed.

The measurements (9,1) and (9,2) both fall into the intersection of the

validation regions of track 2 in cluster 2 and track

I in cluster 3. Therefore, as shown in Figure 9-7(c), these two clusters are

merged. Since each of them has only one probability-one hypothesis, the
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I2
merged cluster has also one probability-one hypothesis which is f 2 T2, 3).

This merged cluster is expanded into 14 hypotheses as shown in 9-7(c). As a

result of pruning, however, only one hypothesis survives just as in scan 4.

Thus, this merged cluster is split into two clusters again.

Figure 9-10 shows how the probability of the best hypothesi" changes from

scan tG scan. After scan 7, there are only two hypotheses. One with proba-

bility .891 correctly identifies all the targets without any false track. The

other, with probability .109, hypothesizes an additional target which may have

been detected at scan 0, undetected at scans 2 and 4, masked at scans 1 and 3

and then escaping out of the field of view.

9.5 Monte Carlo Simulations

The description of the sample run is intended to illustrate some distinc-

tive features of the tracking algorithm developed in this report and how it

may be implemented. It is necessary, however, to perform Monte Carlo simula-

tions if one wants to evaluate the performance of the algorithm. This is true

in general for nonlinear filtering problems for which there is no good ana-

lytic method to predict the performance. It is even more so in this case when

hypothesis management techniques are used extensively. The fixed four-target

scenario shown in Figure 9-6 is used for the simulation. The parameters

introduced earlier are used as a base case. Six other cases are examined to

to see the effects of the three parameters:

) FA expected number of false alarms per scan

2) or - range measurement error standard deviation,

and

3) £ P- pruning threshold
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VFA may be considered to represent the external condition or the noisi-

ness of the radar-preprocessor system, 0 r' a proxy of the measurement accu-

racy, and Ep, a proxy of the computational resource limitation in implementing

1 the tracking algorithm. Seven cases including the base case are summarized in

Table 9-1.

IThe chosen performance indices are: 1) average number of false tracks;

12) average number of missed targets; and 3) probability of perfect associa-

tion. For each Monte Carlo run, the best hypothesis after 10 scans is com-

pared with the truth. To do this, the distance between the expected position

calculated for each track and each true target position is calculated. Then

Iif the distance is less than a pre-specified threshold, 25 m, the pair is
declared feasible. A maximum feasible assignment is sought using a modified

(rectangular) zero-one Munkres algorithm. A track which is not associated

with any true target is declared as a false track. Similarly, a target which

is not accompanied by any feasible track is called a missed target. An event

of perfect association is declared if there is no false track and no missed

1target. For each feasible pair in the assignment found by the Munkres algo-

rit m, the square roots of the mean squared position and velocity errors

are calculated. Each case is examined by a 50-run Monte Carlo simulation.

1Table 9-2 summarizes the results. The results demonstrate a more or less

expected trend, i.e., the worse (the better) the conditions are, the worse

(the better) the performance becomes.

Table 9-2(a) shows the effect of false alarms. The performance as meas-

ured by the average number of false tracks, average number of missed targets

Iand probability of perfect association seems to respond to the average number
of false alarms (1/3, 1 and 3 per scan) in a direct way.
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Table 9-1 Cases for Monte Carlo Simulation

FA r Cp

Case 0 Base Case 1. 3.m .05

Case 1 Low vFA 1/3 3.m .05

Case 2 High VFA 3. 3.m .05

Case 3 Small or 1. l.m .05

Case 4 Large or 1. 9.m .05

Case 5 Low cp 1. 3.m .01

Case 6 High c 1. 3.m .1

VFA Expected Number of False Alarms Per Scan

Cyr  Range Measurement Error Standard Deviation

e p Pruning Threshold

I

T

I
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Table 9-2 Monte Carlo Simulation Results

(a) Variation of False Alarm Rates:

Expected Number of False

Alarms per Scan (vFA) ANFT ANMT PofPA APE AVE

Low: 1/3 .42 .26 .46 5.50 m .259 m/s

Base Case: 1. .48 .58 .34 5.63 m .276 m/s

High: 3. .66 1.02 .14 5.33 m .258 m/s

(b) Variation of Range Measurement Error:

Range Measurement Error

Standard Deviation (or) ANFT ANMT PofPA APE AVE

Small: 1. m .46 .58 .34 4.26 m .274 m/s

Base Case: 3. m .48 .58 .34 5.63 m .276 m/s

Large: 9. m .56 .68 .30 9.33 m .279 m/s

(c) Variation of Pruning Threshold

Pruning Threshold (E ) ANFT ANMT PofPA APE AVE

Low: 0.01 .46 .16 .52 5.72 m .275 m/s

Base Case: 0.05 .48 .58 .34 5.63 m .276 m/s

High: 0.10 .46 .90 .16 5.71 m .277 m/s

ANFT Average Number of False Tracks per Run

ANMT Average Number of Missed Targets per Run

PofPA Probability of Perfect Association (no false
tracks and no missed targets)

APE Average Position Error (conditioned on correct
association)

AVE Average Velocity Error (conditioned on correct
association)
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The mechanism of generating false tracks and missed targets can be

explained as follows. Suppose that a false alarm measurement (0,1) shown in

Figure 9-6 has a negative radial velocity measurement and its position meas-

1 urement is slightly more to the left than the one shown in the figure. A

cluster will be formed out of this measurement and the sole one-track

jhypothesis in this cluster very likely is given a probability greater than .5.
This becomes a source of a false track no matter what is done afterwards

Iunless this cluster is completely ignored. Can one discard such clusters?

I The answer is no, because the calculated probability is consistent with that

of the event of a target generating one measurement and disappearing into the

J zero-detection-probability zones. Thus, the number of false alarms is

directly related to the number of false tracks.

On the other hand, as we have seen before, in order for a sequence of

measurements originating from a target to become a track with enough probabil-

ity to appear in the best hypothesis, two or three scans are needed.

.1 Meanwhile, at each scan, a large number of hypotheses may be created if the

]number of false alarms is large. Then, as a result of pruning, a target may

be lost from the best hypothesis. Therefore, it may be conjectured that, when

Ithe sensor is noisy and produces a large number of false alarms, more scans
are needed before a conclusion is made and a larger number of hypotheses need

Ito be preserved. The latter statement is actually supported by our simulation

1 runs using a lower threshold. The effect of false alarms on the state esti-

mate errors is not significant. This is not surprising because those errors

jare calculated only for the feasible pairs.

The effects of range measurement error as seen in Table 9-2(b) are less

drastic. There is virtually no improvement in the basic performance indices,

1
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I measured by the average number of false tracks, average number of missed tar-

gets and the probability of perfect association when the range measurement

error is smaller than that in the base case. Also, there is no drastic per-

formance degradation when the error is larger. However, some degradation is

noticed as expected, since increasing errors mean more confusion, more

hypotheses, and more branch cutting, etc. We also note that the effect is

more pronounced on the position estimation error while the velocity estimation

Ierror is not affected at all.
I Table 9-2(c) shows the effect of the pruning threshold. The average

number of missed targets is directly affected by this parameter, and a drastic

change can be observed in the table. The average number of false tracks, how-

ever, is not affected. This indicates that the false-track-creating mechanism

described previously is dominant and cannot be improved by keeping more

hypotheses. As in the case of varying the false alarms, state estimation

error is not affected by changing the pruning threshold.

It should be noted that the other performance indices ANFT (average

Inumber of false tracks), ANNT (average number of missed targets) and PofPA
(probability of perfect association) all have to do with how well the data

association has been performed. Of these indices, PofPA is the most stringent

since perfect association (given a certain evaluation threshold) is needed.

For a difficult scenario such as the one used in the example, this is hard to

II come by. A more reasonable set of figures to look at are ANFT and ANHT which

measure the deviation form the ideal performance. From Table 9-2, we see that

the GTC indeed performs quite well in most cases, with ANFT and AN4T less than

6Z and 151 of the actual number of targets in the base case.
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* 10. CONCLUSION

5 A general algorithm for the tracking and classification of multiple tar-

gets has been derived using the Bayesian approach. The models underlying the

algorithms rely on a fairly general set of assumptions. In most of the exist-

ing work on multitarget tracking, there is a certain vaqueness in the mathema-

Itical development, especially when it comes to modeling the number of targets.
In some cases a certain birth-death process is implied about the model, but

this fact has not been used explicitly in the development. In contrast, our

Ibasic approach to target modeling is to start with an explicit model on the

number of targets. Although we have restricted our attention to the case when

I the number of targets is random but constant in time, a time-varying number of

targets can be easily handled within our basic framework either by introducing

an variable which reflects the active or inactive etate of each individual

target or by modifying the basic equations directly. Another distinguishing

feature of our approach is the explicit modeling of the mechanisms which gen-

erate the sensor measurements, namely, detection, random assignment, false

- alarm geveration and measurement value generation.

The result is an algorithm which is considerably more general than what

I has been reported in the literature. It not only can handle tracking and

I classification simultaneously in one unifying framework but can also take care

of unconventional measurement situations such as when terrain masking is

Spresent. When restricted to i.i.d. target models, which account for most of

the existing results, this algorithm provides a unifying view of comparing all

I the common aultitarget tracking algorithms. However, we have not exploited

the full potential of this approach. With some additional work, we believe

this approach can handle more complicated target models, such as targets mov-

ing in a group, etc.
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This vork constitutes the theoretical foundation for developing

I estimation-based processing algorithms in a DSN. It provides the necessary

algorithms to be implemented at each node for processing the local sensor

1data before communicating vith other nodes. By looking at a distributed ver-

Ision of this algorithm, ye can also obtain algorithms for the fusion of infor-

mation from other nodes.

Implementation issues are always crucial in any tracking algorithm, espe-

cially one which relies on the formation of multiple hypotheses. In this par-

ticular case, successful implementation depends on good hypothesis management.

Although we have made some progress in classifying and understanding the tech-

niques, basic theoretical results are still lacking. It is believed that

advances will probably be made through a lot of experimentation and by using

techniques for tree searches from artificial intelligence.

I
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